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Asymptotic Results

Previous Sections...

So far, the likelihood and power function has been described as:

πn(g) =
exp

[∑n
i=1

∑n
j=1 gijuij +

1
2

∑n
i=1

∑n
j=1 gijgjimij +

∑n
i=1

∑n
j=1

∑n
k 6=i,j gijgjkvij

]
c(θ,Gn)

In order to apply asymptotic analysis, this can be rewritten:

πn(g) =
exp

{
n2
[
α

∑n
i=1

∑n
j=1 gij

n2 + β
2

∑n
i=1

∑n
j=1 gijgji

n2 + γ
∑n

i=1

∑n
j=1

∑n
k 6=i,j gijgjk

n3

]}
c(α, β, γ,Gn)

Main assumption:

Completely homogeneous agents.
Notice that γ0 = γ

n
.
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Asymptotic Results

Notions on Graph Limits

From Lovasz (2012):

Given a sequence {Gn}n≥0, we are interested on the homomorphism
density as n→∞:

t(H,G ) =
|hom(H,G )|
|V (G )||V (H)| (1)

If t(H,Gn) converges, it converges to the limit object:

t(H, h) =

∫
[0,1]k

∏
(i ,j)∈E(H)

h(xi , xj)dx1...dxk , (2)

where h ∈ W (all measurable functions h : [0, 1]2 → [0, 1]).

Relation with exchangeability?

Defining the appropriate distance (δ�(f , g)) and a quotient space

(W̃), compactness of the set and continuity of t(·, ·) are achieved.
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Asymptotic Results

Notions on Graph Limits

The stationary distribution can be expressed as:

πn(g , α, β) = exp{n2[T (G̃ )− ψn]}, (3)

The term ψn is the normalizing constant:

ψn =
1

n2
log

∑
G∈Gn

exp
{
n2[T (G̃ )]

}
. (4)
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Asymptotic Results

Notions on Large Deviation for Random Graphs

From Chatterjee and Varadhan (2011):

Based on a rate function:

I(u) = u log u + (1− u) log(1− u)

Extended to W̃:

I(h̃) =

∫ 1

0

∫ 1

0
I(h(x , y))dxdy (5)

Theorem 10 (Asymptotic Log-Constant for Directed Graphs)

If T : W̃ → R is a bounded continuous function and ψn and I are defined
as before:

ψ ≡ lim
n→∞

ψn = sup
h̃∈W̃

{
T (h̃)− I(h̃)

}
(6)
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Asymptotic Results

Application to Mele (2017)

Theorem 2 (Non-negative Link Externalities)

Model (3) with non-negative link externalities β ≥ 0 exhibits the following
behavior:

1 asymptotic normalizing constant ψ solves:

ψ ≡ lim
n→∞

ψn = max
µ∈[0,1]

{
αµ+ βµ2 − µ log(µ)− (1− µ) log(1− µ)

}
(7)

2 networks generated by the model are indistinguishable from directed
Erdos-Renyi graph with linking probability µ∗, defined as follow:

(a) if maximization of (7) has a unique solution, then µ∗ satisfies
2βµ(1− µ) < 1 for almost all α ∈ R and β ≥ 0 and solves:

µ =
exp{α + 2βµ}

1 + exp{α + 2βµ}
(8)

(b) if the maximization of (7) has two solutions, then µ∗ picked randomly
from some probability distribution over µ∗

1 and µ∗
2 , s.t. µ∗

1 < 0.5 < µ∗
2 ,

and both solve (7) and satisfy 2βµ(1− µ) < 1.
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Asymptotic Results

Application to Mele (2017)

Theorem 3 (Negative Link Externalities)

If β < 0 and sufficiently large in magnitude, model (3) is asymptotically
different from a directed Erdos-Renyi model.

The model would be different from the directed Erdos-Renyi model
with at least one negative externality (i.e. β < 0 or γ < 0).

V-shape region has two global maximum and it varies with the level
of utility.
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