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Introduction

Strategic models of network formation provide a framework to interpret the
observed network as the equilibrium of a (potential) game.

Estimation and identification of strategic models is challenging

1) multiple equilibria = links generate externalities not fully accounted for by agents
2) curse dimensionality = # network configs grows exponentially with # agents
3) data on single graph = only one network snapshot is observable

( Proposed model of network formation

¢ combines features from the strategic and random network formation literature

% players’ utilities depend on payoffs from direct links and link externalities (e.g.,
reciprocity, indirect friends, popularity, .. .)

¢ network formation is dynamic: each period, a player meets another one and
decides whether to form a new link, keep an existing link, or do nothing

L % process generates a sequence of directed dense graphs )
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Model of Network Formation

Setup
e n agents, with characteristics X; € R4, Vi€ T :={1,...,n}

e discrete time t € N
e directed, binary network G € G, realisations each time gt

Definition 1 (Individual utility function).

Let uf* = u(X;, X;|0u), mim = m(Xi, Xj[0m), vi* = v(Xi, Xjl6,), wi* = w(X;, Xj|6u)
where 0 =(0,,0m,0,, QW) € R* are parameters.

The utility of agent / from network g is given by the sum of four components

Ui(g, X|6) = Zguuu +Zgugﬂm +ZgJ ZgjkV,k +Zgu ng,wa :
J=1 j=1

A/—/ %,_/ k;élg k;él,j

direct links mutual links

indirect links popularity

» “Markovian” only indirect links are valuable and are perfect substitutes (no utility
from two-links-away contacts)
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Potential Game

Definition 2 (Potential Game).

A game is said to be a Potential Game if the incentive of all players to change their
strategy (here: link formation choice) can be expressed using a single global function
called the potential function Q : G x X — R such that:

Q(gU7g—U7X) - Q(glflﬂg—l_]’x) = UI(gU7g—I_j7X) - Ul(gl_ljag—lj)X)7 VILI vg—l_]

The potential function is useful for:
e analyse equilibrium properties of games,
set of pure Nash equilibria corresponds to the local optima of potential function;
existence of profitable deviations performed using the potential, instead of checking

each player’s possible deviation

e study convergence and finite-time convergence of iterated game towards a Nash

equilibrium
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Assumption 1. (Preferences)

mim = m(Xi, Xi|0m) = m(X;, Xi|0m) = mm Vi j eI xT

JI

ngv w( Xk, Xj|0v) = v(Xk, Xj|0,) = ngv Vk,jeIxT

» first is necessary for identification of the utility from indirect links and popularity;
» second makes another agent i internalise the externality she creates.

Proposition 1 (Existence Potential Function).

Under Assumption 1, the deterministic components of the incentives of any player in
any state of the network are summarized by a potential function Q : G x X — R
and the network game is a Potential Game

n n n n n n n
Qe X16) =D _ > eyuyy +>_ D gigim” +) > > gigivic
i=1 j=1 i=1 j>i i=1 j=1 k=1
j#i k#ij
Q is an aggregate function summarising: (i) state of network; (ii) deterministic

incentives of players in each state.
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Network formation process

Stochastic best-response dynamics, generating a Markov chain of graphs:
e for each t, randomly chosen player i meets j according to meeting technology

e meeting process is a stochastic sequence m = {m'}, supported on Z x Z, with
realisations m* = ij = {i, j} whose probability is

P(m' = ijlg" !, X) = p(g" 1, Xi, X))

Assumption 2. (Meeting process)
The meeting probability between i, j does not depend on the existence of a link
between them, and each meeting has a positive probability of occurring, that is

plg" X, Xj) = plgty! Xi, Xj) >0 Vij

» guarantees any equilibrium network can be reached with positive probability
Idea: Assumption 2 makes the Markov chain irreducible
» identification: if p depends on link gj; = prevents closed form likelihood
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Players’ rules

e conditional on meeting m* = ij, player i updates link gjj to maximise her utility
e existing network gr-jl is taken as given

e complete information: everybody known each others’ attributes and whole network

e myopia: agents not account for effects of their linking strategy on future evolution
of network

Assumption 3. (ldiosyncratic shocks)

: : o jid
Idiosyncratic shock on individual preferences: ¢j; ; < EVi(gjj¢) Type | extreme value
distribution, iid among links and across time

= > 0 proba moving out from any state — eliminates absorbing states

e link established if and only if

U,(g,j = ].,gi;l,X‘e) + &1t > U,(glj = Ojgﬁ;lj)qg) + ot

Process generates a Markov chain of networks:
v/ transition proba determined by: (i) meeting process, (ii) agents’ linking choices

v irreducible (from Assumption 2), aperiodic (from Assumption 3)
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Equilibrium

Any change in utility for any agent is equivalent to change in potential Q. So, any
deviation from Nash (equilibrium) network must decrease the potential.

Thus, the Nash network is a local maximizer of the potential function over the set of
networks that differ from the current network for at most one link.

Theorem 1 (Uniqueness and Characterisation of Stationary Equilibrium).

The network formation game, under Assumptions 1-3, converges to a unique
stationary distribution

exp{Q(g, X|60)}

(g, X|0) = > weg &P{Q(w, X[6)}
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Comments

e existence and uniqueness come from irreducibility and aperiodicity of Markov chain

e closed form stationary (g, X|@) corresponds to the likelihood of observing a
specific network configuration in the long run

e estimation: uniqueness avoids multiple equilibria
= unique stationary = unique likelihood

= can estimate 6 with only one network, assumed drawn from stationary equilibrium

e (g, X|0) coincides with likelihood of ERGM (Exponential Random Graph
Model), where probability observing a network is proportional to exponential of
linear combination of network statistics

Let Assumptions 1-3 hold. If the utility functions are linear in parameters, the
stationary distribution 7(g, X|@) describes an ERGM, with t(g, X) a vector of
canonical statistics

exp{0't(g, X)}

T S (0t X))
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Model without shocks

Proposition 2 (Model Without Shocks: Equilibria and Long Run).

Consider the model without idiosyncratic preference shocks. Under Assumptions 1-2:

(i) there exists at least one pure-strategy Nash equilibrium network.

(i) the set NE(G, X, U) of all pure-strategy Nash equilibria of the network formation
game is completely characterized by the local maxima of the potential function:

NEG, X, U) = {g* :g¥ =arg max Q(g,X)}.
geN(g*)

(iii) any pure-strategy Nash equilibrium is an absorbing state.

(iv) as t — oo, the network converges to one of the Nash networks with probability 1.
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Extensions

Utility functions
I possible to include additional utility components, as long as possible to find
restrictions on payoffs that guarantee the existence of a potential function

Undirected networks o o _ _
possible to extend existence results, characterisation of equilibrium, relation with

ERGM and asymptotic results to undirected networks

Sparsity
=" model with negative linking externalities is compatible with a certain degree of
sparsity
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Estimation and ldentification

Likelihood function

L(g,XI6) = nla XI6) = =T o = S

whose normalizing constant ¢(G, X, 0) is intractable since it sums 2"("~1) terms.

X standard ML infeasible
X MCMC with standard MH step infeasible (ratio of normalizing constants)
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Estimation Algorithm

ERGM literature = approximate c(G, X, 8) via MCMC (for fixed 6y)

Algorithm 1 Metropolis-Hastings for Network Simulations

1: procedure MH_NETSIM(O0, g0, R)

2: forr=1,...,R do

3: 1) propose network g’ ~ g (g’|g'”)
4: 2) accept network g’ with probability

a(g",g') = min {1 exp{Q(g", X|60)} Qg(g(r)g/)}

"exp{Q(g"), X|600)} qg(g’|g")

5: end for
6: return sequence of R networks {g("},
7: end procedure

v not requires ¢c(G, X, 0)

X slow convergence
X local sampler at each iteration, update link gj according to «f-, -)
X degeneracy problem: large probability mass on few networks
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Estimation Algorithm

ERGM literature = approximate c(G, X, 8) via MCMC (for fixed 6y)

Algorithm 1 Metropolis-Hastings for Network Simulations

1. procedure MH_NETSIM(Oq, 8o, R)
2: forr=1,...,R do
3: 1) propose network g’ ~ g.(g’|g'”)

4. 2) accept network g’ with probability

O o exp{Q(g’, X[60)} qs(g"Ig")
@ , =minq 1,
€8 { exp{O(87), X[00)} a5(g'l&")
5: end for

6: return sequence of R networks {g{"},
7: end procedure

[ » how to choose qg(~|g(’))?
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Asymptotic behaviour

Classes of asymptotics for networks
1) many networks = same players, growing number of networks

2) = growing number of players, same network

» Hp: homogeneous players (i.e. X; = Xj, Vi, )
» potential function re-scaled by n*(H), with v(H) # players in each utility term

» example re-scaled likelihood, with 7(g) = at(H1, g) + St(Hz, g) re-scaled
potential and v, = n~2log(c(«, 8,Gn)) log-normalising constant

Zr]fl {771gij 2’771 "171 ZZ i 8ijBjk
2 i= j= i= j= #i 8Y8)
expg n [a p + 8 3

Tn(gla, B) = c(a,8,Gn)
= exp {n2 [T(g) - ¢n]} G)
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Asymptotic behaviour

Theorem 2 (Nonnegative Link Externalities).

Model (3) with nonnegative link externalities 5 > 0 exhibits the following behaviour

1) asymptotic normalizing constant ¢ solves

Y= lim ¢, = max {ozu + Bp? — plog(p) — (1 — p) log(1 — u)} (4)

e nel0,1]

2) networks generated by the model are indistinguishable from directed Erdés—Rényi
graph with linking probability ©*, defined as follows:
(a) if the maximization (4) has a unique solution, then p* satisfies 26u(1—mu) < 1
for almost all @ € R and 5 > 0, and solves

__exp{a+28u}
- I+exp{a+28u}

(5)

(b) if the maximization (4) has two solutions, then p* picked randomly from same
proba distribution over p and p3, such that i < 0.5 < p3, and both solve (5)
and satisfy 28u(1 — p) < 1.
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Comments on Theorem 2

» consistent estimator of log-normalising constant — analogue of variational
representation of the discrete exponential family

» 5 > 0 = realisations using («a, ) indistinguishable from those using
(«/,0) = (log(p*/(1 — u*)),0), that is from Erdds-Rényi model

Corollary 2.2.

When 5 > 0, the externality cannot be identified.

Corollary 2.3.

When 5 > 0, Algorithm 1 is not necessary since Erdos-Rényi graphs can be simulated
using Bernoulli draws.

11th October 2018 Mele (2017) 16



A Structural Model of Dense Network Formation 3. Estimation and ldentification

Asymptotic behaviour

Theorem 3 (Negative Link Externalities).
If 5 < 0 and sufficiently large in magnitude, model (3) is asymptotically different
from a directed Erdos-Rényi model.

erdos-renyi p.l

v sparser graphs than Erdos-Rényi

indirect links density
0.10
1

0.05
|

0 2000 4000 8000 8000 10000

iterations
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Asymptotic behaviour

Theorem 3 (Negative Link Externalities).

If 5 < 0 and sufficiently large in magnitude, model (3) is asymptotically different
from a directed Erdos-Rényi model.

[ » how much “sufficiently large” magnitude?

» how to know it, since we must estimate (37 ]
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Asymptotic behaviour
Consider an additional utility component (cyclic triangles):

T(g) = at(Hi, g) + Bt(Hz,8) +7t(H3,8),  t(H3, g Zzzgugjkgk,

i=1 j=1 k#i

Consider model (6) as n — oo

1) If 3> 0 and v > 0, then the asymptotic normalising constant 1 solves

¥ = lim ¥, = max {ozu + Bu® +yp’ — plog(p) — (1 — p) log(1 — u)} (7)
=ee 1€lo,1]

and model is asymptotically indistinguishable from directed Erdos-Rényi graph, with

w* maximising (7). If the maximisation problem has multiple solutions, then u*

picked randomly from some distribution on maximisers.

2) If at least one externality is negative (i.e. 5 < 0 or 7 < 0) and sufficiently large,
then model (6) not converge asymptotically to directed Erdds-Rényi graph and
externalities can be identified.
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Summary of Asymptotics

Homogeneous players (X; = X;, Vi, j):

(a) positive externalities
e asymptotically indistinguishable from Erdos-Rényi graph
e externalities not identified

e can approximate likelihood of model via likelihood of Erdos-Rényi graph

(b) at least one externality negative and large

e asymptotically sparser than Erdos-Rényi graph
e externalities identified
Heterogeneous players (3/, j such that X; # Xj):

e no results

e preliminary study in Mele & Zhu (2017) - working paper
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Sampler Convergence

Theorem 5 (Convergence of Local Sampler with Nonnegative Externalities).
Model (6), with probability of meeting p;; = 1/(n(n — 1)). Fix v > 0. Then, in the
case of nonnegative externalities 8 > 0, there exists a V-shaped region of the
parameter space delimited by functions S,(¢1(a)), Sy(¢2(a)) such that

1) if («, B) belongs to the V-shaped region, then model converges to stationarity in
eCr steps, C > 0. This results holds for any local sampler.

2) otherwise, model converges in Cn? log(n) steps, C > 0.

Intuition:
(1a) in the V-shaped region problem (7) has 2 local maxima, the sampler spend

exponential time at one of them (i.e. probability e~ to escape from local max)
(1b) increasing v == increase area of exponentially slow convergence

(2a) when convergence is quadratic = sampler feasible for n < 500
(2b) this happens when model is indistinguishable from directed Erdds-Rényi graph
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Simulation and Estimation in Finite Networks

Posterior inference via approx version of exchange algorithm of MGMO06 [14]
» double Metropolis-Hastings step to avoid computing ¢(G, X, 0)

» data augmentation via auxiliary network g’
» higher R = better approximation of posterior, but higher rejection rate

Algorithm 2 Approximate Exchange Algorithm
1: procedure AEA(0,g, M, R)

2 form=1,...,M do

3 1) propose parameter 8’ ~ go(-|0)

4

5

2) run Algorithm 1 for R iterations using 8’. Keep last simulated network g’
3) accept parameter ' with probability

;L [ exp{Q(g', X10)} p(6') q0(616") exp { Qg X|6)}
0, 9 5 5 = 17 / /
o6.6.¢.8) ”"“{ exp{Qle. XI0)} p(6) 40(6'10) exp { Qg", XI0')}
6: end for
7 return sequence of M parameters {68(™},,

8: end procedure
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Simulation and Estimation in Finite Networks

Algorithm 2 Approximate Exchange Algorithm
1. procedure AEA(0, g, M, R)

2 form=1,...,M do

3: 1) propose parameter 6’ ~ qgo(+|0)

4

5

2) run Algorithm 1 for R iterations using 8’. Keep last simulated network g’
3) accept parameter 8’ with probability

0005, min 1, AL KON o0V 00101 0 (s X0} |

" exp{Q(g, X10)} p(6) qo(6'(0) exp {Q(g’, X|0")}

6: end for
7 return sequence of M parameters {68(™},,
8: end procedure

» what prior distribution p(8)?

» what proposal distribution gg(-|6)?

11th October 2018 Mele (2017) 21



A Structural Model of Dense Network Formation 4. Simulation and Estimation

Simulation results

00
L
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indirsct links density

post. mean — trua: -
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true: p iterations

Figure: Left: Estimates of 8 < 0, with 95% credibility intervals (middle: zoom-in). Right:
indirect links density.

-30 -25 -20 -15 -10 -5 0

true: b

e >0 = Erdos-Rényi case, not identified
e <0 — identified
e 5 < 0 = estimation impossible: # indirect links close to 0
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Simulation results

(Almost) Erdos-Renyi

Identified

Computational problems

Figure: Left: approximate regions of identified parameters, for n = 100.
Right: comparison of regions for n = 100, n = 200.

Regions of identified parameters («, 3) vary with n, the number of players.
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Simulation results
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Figure: Difference between posterior estimates and true, for varying number of
network simulations R: n = 100 (left) and n = 200 (right).
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Simulation results
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Figure: Posterior standard deviation for varying number of network simulations
R: n =100 (left) and n = 200 (right).
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Simulation results

» R =1000 = imprecise estimates

» no significant difference between R = 10,000 and R = 100,000 = suggest
rule-of-thumb R = 10,000

» cost of increasing network simulations = almost linear O(R)

> results suggest convergence is almost quadratic O(n?) in this area of parameter
space
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Simulation results

» R =1000 = imprecise estimates

» no significant difference between R = 10,000 and R = 100,000 = suggest
rule-of-thumb R = 10,000

» cost of increasing network simulations == almost linear O(R)

» results suggest convergence is almost quadratic O(n?) in this area of parameter
space

» what was the computing time?

» what about real data applications?
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Conclusions

The paper in a nutshell:
¢ network formation model, combining strategic and random networks features

% payoffs depend on links: direct + indirect (externalities)
¢ homogeneous players meet sequentially at random, myopically updating links
<

network formation process is a potential game and converges to ERGM,
generating directed dense networks

<

identification: only if at least 1 externality negative and sufficiently large

standard estimation for ERGMs exponentially slow = Bayesian MCMC (almost
quadratic time)

<
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Conclusions

Unclear points and questions:
IS theoretical quantification of “sufficiently large” (negative) magnitude of 57

=" choice of prior for parameters p(6)?

I choice of proposal for network g, (-|g)?

I choice of proposal for parameters gg(-|6)?
I duration of computing time in simulations?

I real data applications?
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Summary of discussions

» 11 october
Mele (2017), section 1-2.

Discussant: Matteo lacopini

» 18 october
Mele (2017), section 2, Appendix A + Tamer (2003), summary.
Discussant: Carlo Santagiustina

» 25 october
Mele (2017), section 3.
Discussant:

» 8 novemeber
Mele (2017), section 4.
Discussant: Giulia Carallo
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