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Introduction

Strategic models of network formation provide a framework to interpret the
observed network as the equilibrium of a (potential) game.

Estimation and identification of strategic models is challenging

1) multiple equilibria ⇒ links generate externalities not fully accounted for by agents

2) curse dimensionality ⇒ # network configs grows exponentially with # agents

3) data on single graph ⇒ only one network snapshot is observable

Proposed model of network formation

D combines features from the strategic and random network formation literature

D players’ utilities depend on payoffs from direct links and link externalities (e.g.,

reciprocity, indirect friends, popularity, . . . )

D network formation is dynamic: each period, a player meets another one and

decides whether to form a new link, keep an existing link, or do nothing

D process generates a sequence of directed dense graphs
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Model of Network Formation

Setup

• n agents, with characteristics Xi ∈ RA, ∀i ∈ I := {1, . . . , n}
• discrete time t ∈ N
• directed, binary network G ∈ G, realisations each time g t

Definition 1 (Individual utility function).

Let uθuij = u(Xi ,Xj |θu), mθm
ij = m(Xi ,Xj |θm), vθvij = v(Xi ,Xj |θv ), wθw

ij = w(Xi ,Xj |θw )

where θ = (θu, θm, θv , θw )′ ∈ R4 are parameters.

The utility of agent i from network g is given by the sum of four components

Ui (g ,X |θ) =
n∑

j=1

giju
θu
ij︸ ︷︷ ︸

direct links

+
n∑

j=1

gijgjim
θm
ij︸ ︷︷ ︸

mutual links

+
n∑

j=1

gij

n∑
k=1
k 6=i ,j

gjkv
θv
ik

︸ ︷︷ ︸
indirect links

+
n∑

j=1

gij

n∑
k=1
k 6=i ,j

gkiw
θw
kj

︸ ︷︷ ︸
popularity

.

I “Markovian” only indirect links are valuable and are perfect substitutes (no utility
from two-links-away contacts)
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Potential Game

Definition 2 (Potential Game).

A game is said to be a Potential Game if the incentive of all players to change their

strategy (here: link formation choice) can be expressed using a single global function

called the potential function Q : G × X → R such that:

Q(gij , g−ij ,X )−Q(g ′ij , g−ij ,X ) = Ui (gij , g−ij ,X )− Ui (g
′
ij , g−ij ,X ), ∀i , j ∀g−ij

Remark 1.

The potential function is useful for:

• analyse equilibrium properties of games,

set of pure Nash equilibria corresponds to the local optima of potential function;

existence of profitable deviations performed using the potential, instead of checking

each player’s possible deviation

• study convergence and finite-time convergence of iterated game towards a Nash

equilibrium
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Assumption 1. (Preferences)

mθm
ij = m(Xi ,Xj |θm) = m(Xj ,Xi |θm) = mθm

ji ∀i , j ∈ I × I

wθv
kj = w(Xk ,Xj |θv ) = v(Xk ,Xj |θv ) = vθvkj ∀k , j ∈ I × I

I first is necessary for identification of the utility from indirect links and popularity;

I second makes another agent i internalise the externality she creates.

Proposition 1 (Existence Potential Function).

Under Assumption 1, the deterministic components of the incentives of any player in

any state of the network are summarized by a potential function Q : G × X → R
and the network game is a Potential Game

Q(g ,X |θ) =
n∑

i=1

n∑
j=1

giju
θu
ij +

n∑
i=1

n∑
j>i

gijgjim
θm
ij +

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1
k 6=i,j

gijgjkv
θv
ik

Q is an aggregate function summarising: (i) state of network; (ii) deterministic

incentives of players in each state.
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Network formation process

Stochastic best-response dynamics, generating a Markov chain of graphs:

• for each t, randomly chosen player i meets j according to meeting technology

• meeting process is a stochastic sequence m = {mt}t supported on I × I, with
realisations mt = ij = {i , j} whose probability is

P(mt = ij |g t−1,X ) = ρ(g t−1,Xi ,Xj)

Assumption 2. (Meeting process)

The meeting probability between i , j does not depend on the existence of a link

between them, and each meeting has a positive probability of occurring, that is

ρ(g t−1,Xi ,Xj) = ρ(g t−1
−ij ,Xi ,Xj) > 0 ∀ij

I guarantees any equilibrium network can be reached with positive probability

Idea: Assumption 2 makes the Markov chain irreducible

I identification: if ρ depends on link gij ⇒ prevents closed form likelihood
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Players’ rules

• conditional on meeting mt = ij , player i updates link gij to maximise her utility

• existing network g t−1
−ij is taken as given

• complete information: everybody known each others’ attributes and whole network
• myopia: agents not account for effects of their linking strategy on future evolution

of network

Assumption 3. (Idiosyncratic shocks)

Idiosyncratic shock on individual preferences: εij ,t
iid∼ EV1(εij ,t) Type I extreme value

distribution, iid among links and across time

⇒ > 0 proba moving out from any state → eliminates absorbing states

• link established if and only if

Ui (g
t
ij = 1, g t−1

−ij ,X |θ) + ε1t > Ui (g
t
ij = 0, g t−1

−ij ,X |θ) + ε0t

Process generates a Markov chain of networks:

3 transition proba determined by: (i) meeting process, (ii) agents’ linking choices

3 irreducible (from Assumption 2), aperiodic (from Assumption 3)
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Equilibrium

Remark 2.

Any change in utility for any agent is equivalent to change in potential Q. So, any

deviation from Nash (equilibrium) network must decrease the potential.

Thus, the Nash network is a local maximizer of the potential function over the set of

networks that differ from the current network for at most one link.

Theorem 1 (Uniqueness and Characterisation of Stationary Equilibrium).

The network formation game, under Assumptions 1–3, converges to a unique

stationary distribution

π(g ,X |θ) =
exp{Q(g ,X |θ)}∑
ω∈G exp{Q(ω,X |θ)}

(1)
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Comments

• existence and uniqueness come from irreducibility and aperiodicity of Markov chain

• closed form stationary π(g ,X |θ) corresponds to the likelihood of observing a
specific network configuration in the long run

• estimation: uniqueness avoids multiple equilibria
⇒ unique stationary = unique likelihood

⇒ can estimate θ with only one network, assumed drawn from stationary equilibrium

• π(g ,X |θ) coincides with likelihood of ERGM (Exponential Random Graph
Model), where probability observing a network is proportional to exponential of
linear combination of network statistics

Corollary 2.1.

Let Assumptions 1–3 hold. If the utility functions are linear in parameters, the

stationary distribution π(g ,X |θ) describes an ERGM, with t(g ,X ) a vector of

canonical statistics

π(g ,X |θ) =
exp{θ′t(g ,X )}∑
ω∈G exp{θ′t(ω,X )}

(2)
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Model without shocks

Proposition 2 (Model Without Shocks: Equilibria and Long Run).

Consider the model without idiosyncratic preference shocks. Under Assumptions 1-2:

(i) there exists at least one pure-strategy Nash equilibrium network.

(ii) the set NE(G,X ,U) of all pure-strategy Nash equilibria of the network formation

game is completely characterized by the local maxima of the potential function:

NE(G,X ,U) =

{
g∗ : g∗ = arg max

g∈N (g∗)
Q(g ,X )

}
.

(iii) any pure-strategy Nash equilibrium is an absorbing state.

(iv) as t →∞, the network converges to one of the Nash networks with probability 1.
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Extensions

Utility functions
+ possible to include additional utility components, as long as possible to find
restrictions on payoffs that guarantee the existence of a potential function

Undirected networks
+ possible to extend existence results, characterisation of equilibrium, relation with
ERGM and asymptotic results to undirected networks

Sparsity
+ model with negative linking externalities is compatible with a certain degree of
sparsity
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Estimation and Identification

Likelihood function

L(g ,X |θ) = π(g ,X |θ) =
Q(g ,X |θ)∑
ω∈G Q(ω,X |θ)

=
Q(g ,X |θ)

c(G,X ,θ)

whose normalizing constant c(G,X ,θ) is intractable since it sums 2n(n−1) terms.

7 standard ML infeasible
7 MCMC with standard MH step infeasible (ratio of normalizing constants)
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Estimation Algorithm

ERGM literature ⇒ approximate c(G,X ,θ) via MCMC (for fixed θ0)

Algorithm 1 Metropolis-Hastings for Network Simulations

1: procedure MH NetSim(θ0, g0,R)

2: for r = 1, . . . ,R do

3: 1) propose network g ′ ∼ qg (g ′|g (r))

4: 2) accept network g ′ with probability

α(g (r), g ′) = min

{
1,

exp{Q(g ′,X |θ0)}
exp{Q(g (r),X |θ0)}

qg (g (r)|g ′)
qg (g ′|g (r))

}
5: end for

6: return sequence of R networks {g (r)}r
7: end procedure

3 not requires c(G,X ,θ)

7 slow convergence
7 local sampler at each iteration, update link gij according to α(·, ·)
7 degeneracy problem: large probability mass on few networks
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Estimation Algorithm

ERGM literature ⇒ approximate c(G,X ,θ) via MCMC (for fixed θ0)

Algorithm 1 Metropolis-Hastings for Network Simulations

1: procedure MH NetSim(θ0, g0,R)

2: for r = 1, . . . ,R do

3: 1) propose network g ′ ∼ qg (g ′|g (r))

4: 2) accept network g ′ with probability

α(g (r), g ′) = min

{
1,

exp{Q(g ′,X |θ0)}
exp{Q(g (r),X |θ0)}

qg (g (r)|g ′)
qg (g ′|g (r))

}
5: end for

6: return sequence of R networks {g (r)}r
7: end procedure

I how to choose qg (·|g (r))?
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Asymptotic behaviour

Classes of asymptotics for networks

1) many networks ⇒ same players, growing number of networks

2) large networks ⇒ growing number of players, same network

I Hp: homogeneous players (i.e. Xi = Xj , ∀i , j)

I potential function re-scaled by nν(H), with ν(H) # players in each utility term

I example re-scaled likelihood, with T (g) = αt(H1, g) + βt(H2, g) re-scaled
potential and ψn = n−2 log(c(α, β,Gn)) log-normalising constant

πn(g |α, β) =

exp

n2

[
α

∑n
i=1

∑n
j=1 gij

n2
+ β

∑n
i=1

∑n
j=1

∑n
k 6=i gijgjk

n3

]
c(α, β,Gn)

= exp
{
n2
[
T (g)− ψn

]}
(3)
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Asymptotic behaviour

Theorem 2 (Nonnegative Link Externalities).

Model (3) with nonnegative link externalities β ≥ 0 exhibits the following behaviour

1) asymptotic normalizing constant ψ solves

ψ = lim
n→∞

ψn = max
µ∈[0,1]

{
αµ+ βµ2 − µ log(µ)− (1− µ) log(1− µ)

}
(4)

2) networks generated by the model are indistinguishable from directed Erdös–Rényi

graph with linking probability µ∗, defined as follows:

(a) if the maximization (4) has a unique solution, then µ∗ satisfies 2βµ(1−mu) < 1

for almost all α ∈ R and β ≥ 0, and solves

µ =
exp {α + 2βµ}

1 + exp {α + 2βµ}
(5)

(b) if the maximization (4) has two solutions, then µ∗ picked randomly from same

proba distribution over µ∗1 and µ∗2, such that µ∗1 < 0.5 < µ∗2, and both solve (5)

and satisfy 2βµ(1− µ) < 1.
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Comments on Theorem 2

I consistent estimator of log-normalising constant – analogue of variational
representation of the discrete exponential family

I β ≥ 0 ⇒ realisations using (α, β) indistinguishable from those using
(α′, 0) = (log(µ∗/(1− µ∗)), 0), that is from Erdös-Rényi model

Corollary 2.2.

When β ≥ 0, the externality cannot be identified.

Corollary 2.3.

When β ≥ 0, Algorithm 1 is not necessary since Erdös-Rényi graphs can be simulated

using Bernoulli draws.
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Asymptotic behaviour

Theorem 3 (Negative Link Externalities).

If β < 0 and sufficiently large in magnitude, model (3) is asymptotically different

from a directed Erdös-Rényi model.

3 sparser graphs than Erdös-Rényi
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Asymptotic behaviour

Theorem 3 (Negative Link Externalities).

If β < 0 and sufficiently large in magnitude, model (3) is asymptotically different

from a directed Erdös-Rényi model.

I how much “sufficiently large” magnitude?

I how to know it, since we must estimate β?
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Asymptotic behaviour
Consider an additional utility component (cyclic triangles):

T (g) = αt(H1, g) + βt(H2, g) + γt(H3, g), t(H3, g) =
n∑

i=1

n∑
j=1

n∑
k 6=i

gijgjkgki (6)

Theorem 4.

Consider model (6) as n→∞

1) If β ≥ 0 and γ ≥ 0, then the asymptotic normalising constant ψ solves

ψ = lim
n→∞

ψn = max
µ∈[0,1]

{
αµ+ βµ2 + γµ3 − µ log(µ)− (1− µ) log(1− µ)

}
(7)

and model is asymptotically indistinguishable from directed Erdös-Rényi graph, with

µ∗ maximising (7). If the maximisation problem has multiple solutions, then µ∗

picked randomly from some distribution on maximisers.

2) If at least one externality is negative (i.e. β < 0 or γ < 0) and sufficiently large,

then model (6) not converge asymptotically to directed Erdös-Rényi graph and

externalities can be identified.
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Summary of Asymptotics

Remark 3.

Homogeneous players (Xi = Xj , ∀i , j):

(a) positive externalities

• asymptotically indistinguishable from Erdös-Rényi graph

• externalities not identified

• can approximate likelihood of model via likelihood of Erdös-Rényi graph

(b) at least one externality negative and large

• asymptotically sparser than Erdös-Rényi graph

• externalities identified

Heterogeneous players (∃i , j such that Xi 6= Xj):

• no results

• preliminary study in Mele & Zhu (2017) - working paper
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Sampler Convergence

Theorem 5 (Convergence of Local Sampler with Nonnegative Externalities).

Model (6), with probability of meeting ρij = 1/(n(n − 1)). Fix γ ≥ 0. Then, in the

case of nonnegative externalities β ≥ 0, there exists a V-shaped region of the

parameter space delimited by functions Sγ(φ1(α)), Sγ(φ2(α)) such that

1) if (α, β) belongs to the V-shaped region, then model converges to stationarity in

eCn
2

steps, C > 0. This results holds for any local sampler.

2) otherwise, model converges in Cn2 log(n) steps, C > 0.

Intuition:
(1a) in the V-shaped region problem (7) has 2 local maxima, the sampler spend

exponential time at one of them (i.e. probability e−Cn
2

to escape from local max)

(1b) increasing γ =⇒ increase area of exponentially slow convergence

(2a) when convergence is quadratic =⇒ sampler feasible for n < 500

(2b) this happens when model is indistinguishable from directed Erdös-Rényi graph
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Simulation and Estimation in Finite Networks

Posterior inference via approx version of exchange algorithm of MGM06 [14]

I double Metropolis-Hastings step to avoid computing c(G,X ,θ)

I data augmentation via auxiliary network g ′

I higher R =⇒ better approximation of posterior, but higher rejection rate

Algorithm 2 Approximate Exchange Algorithm

1: procedure AEA(θ, g ,M,R)

2: for m = 1, . . . ,M do

3: 1) propose parameter θ′ ∼ qθ(·|θ)

4: 2) run Algorithm 1 for R iterations using θ′. Keep last simulated network g ′

5: 3) accept parameter θ′ with probability

α(θ,θ′, g ′, g) = min

{
1,

exp{Q(g ′,X |θ)}
exp{Q(g ,X |θ)}

p(θ′)

p(θ)

qθ(θ|θ′)
qθ(θ′|θ)

exp
{
Q(g ,X |θ′)

}
exp

{
Q(g ′,X |θ′)

}}
6: end for

7: return sequence of M parameters {θ(m)}m
8: end procedure
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Simulation and Estimation in Finite Networks

Algorithm 2 Approximate Exchange Algorithm

1: procedure AEA(θ, g ,M,R)

2: for m = 1, . . . ,M do

3: 1) propose parameter θ′ ∼ qθ(·|θ)

4: 2) run Algorithm 1 for R iterations using θ′. Keep last simulated network g ′

5: 3) accept parameter θ′ with probability

α(θ,θ′, g ′, g) = min

{
1,

exp{Q(g ′,X |θ)}
exp{Q(g ,X |θ)}

p(θ′)

p(θ)

qθ(θ|θ′)
qθ(θ′|θ)

exp
{
Q(g ,X |θ′)

}
exp

{
Q(g ′,X |θ′)

}}
6: end for

7: return sequence of M parameters {θ(m)}m
8: end procedure

I what prior distribution p(θ)?

I what proposal distribution qθ(·|θ)?

11th October 2018 Mele (2017) 21



A Structural Model of Dense Network Formation 4. Simulation and Estimation

Simulation results

Figure: Left: Estimates of β < 0, with 95% credibility intervals (middle: zoom-in). Right:

indirect links density.

• β ≥ 0 =⇒ Erdös-Rényi case, not identified
• β < 0 =⇒ identified
• β � 0 =⇒ estimation impossible: # indirect links close to 0
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Simulation results

Figure: Left: approximate regions of identified parameters, for n = 100.

Right: comparison of regions for n = 100, n = 200.

Remark 4.

Regions of identified parameters (α, β) vary with n, the number of players.
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Simulation results

Figure: Difference between posterior estimates and true, for varying number of

network simulations R: n = 100 (left) and n = 200 (right).
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Simulation results

Figure: Posterior standard deviation for varying number of network simulations

R: n = 100 (left) and n = 200 (right).
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Simulation results

I R = 1000 =⇒ imprecise estimates
I no significant difference between R = 10, 000 and R = 100, 000 =⇒ suggest

rule-of-thumb R = 10, 000

I cost of increasing network simulations =⇒ almost linear O(R)

I results suggest convergence is almost quadratic O(n2) in this area of parameter
space
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Simulation results

I R = 1000 =⇒ imprecise estimates
I no significant difference between R = 10, 000 and R = 100, 000 =⇒ suggest

rule-of-thumb R = 10, 000

I cost of increasing network simulations =⇒ almost linear O(R)

I results suggest convergence is almost quadratic O(n2) in this area of parameter
space

I what was the computing time?

I what about real data applications?
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Conclusions

The paper in a nutshell:

D network formation model, combining strategic and random networks features

D payoffs depend on links: direct + indirect (externalities)

D homogeneous players meet sequentially at random, myopically updating links

D network formation process is a potential game and converges to ERGM,
generating directed dense networks

D identification: only if at least 1 externality negative and sufficiently large

D standard estimation for ERGMs exponentially slow ⇒ Bayesian MCMC (almost
quadratic time)
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Conclusions

Unclear points and questions:

+ theoretical quantification of “sufficiently large” (negative) magnitude of β?

+ choice of prior for parameters p(θ)?

+ choice of proposal for network qg (·|g)?

+ choice of proposal for parameters qθ(·|θ)?

+ duration of computing time in simulations?

+ real data applications?
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Summary of discussions

I 11 october
Mele (2017), section 1-2.

Discussant: Matteo Iacopini

I 18 october
Mele (2017), section 2, Appendix A + Tamer (2003), summary.

Discussant: Carlo Santagiustina

I 25 october
Mele (2017), section 3.

Discussant:

I 8 novemeber
Mele (2017), section 4.

Discussant: Giulia Carallo

11th October 2018 Mele (2017) 29



References



A Structural Model of Dense Network Formation 6. References

References i

Jackson, M. O. (2008), Social and Economics Networks. Princeton

Lovasz, L. (2012), Large Networks and Graph Limits. American Mathematical

Society Colloquium Publications, Vol. 60. American Mathematical Society

Badev, A. (2017), “Discrete Games in Endogenous Networks: Equilibria and

Policy”, Workin Paper. Available at arXiv https://arxiv.org/abs/1705.03137v1

Caimo, A., & N. Friel (2011), “Bayesian Inference for Exponential Random Graph

Models”, Social Networks, 33(1):41–55

Chatteriee, S., & S. R. S. Varadhan (2011), “The Large Deviation Principle for the
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