How homophily affects the speed of learning and best-responding dynamics_Session 1
 The Quarterly Journal of Economics (2012)

Benjamin Golub \& Matthew O.Jackson

The Road Map

- Introduction of the Models
- Multi-type random networks
- The average-based updating processes
- Convergence and the Measure of the speed
- How homophily affects the learning
- Define spectral homophily
- Show how spectral homophily affects the convergence time of average-based updating processes
- A special case: The islands model
- Two measures of homophily coincides

Multi-type radom networks

Set-up

- a set of n nodes, $N=\{1, \ldots, n\}$
- a network (undirected) represented via a n-by-n adjacency matrix A , $A_{i j} \in\{0,1\}$
- the degree of node $i, d_{i}(A)=\sum_{j=1}^{n} A_{i j}$
- the sum of all degrees, $D(A)=\sum_{i} d_{i}(A)$ which is twice of the total number of links
- there are m different types of nodes, $N_{k} \subset N$ denote the set of nodes of type k,the size of group k denotes by $n_{k}=\left|N_{k}\right|$
- $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{m}\right)$ be the corresponding vector of cardinalities, n denotes the total number of agents
- $P_{k l}$ represents the probability that an agent of type k links to an agent of type / and P is a m -by-m symmetric matrix
- $A_{i j}=A_{j i}$ and $A_{i i}=0$ for each i

A multi-type random network is defined by the cardinality vector \mathbf{n} together with a symmetric m -by-m matrix $\mathrm{P}: A(P, n)$

The average based updating process

- Let $T(A)$ be defined by $T_{i j}(A)=\frac{A_{i j}}{d_{i}(A)}$ (uniformization)
- the initial vector of beliefs $b(0) \in[0,1]^{n}$

Agent i 's choice at date t is

$$
b_{i}(t)=\underbrace{\sum_{j} T_{i j}(A) b_{j}(t-1)}
$$

Agent i only updates the average of his or her neighbors' last period choices, because $T_{i i}=0$

In matrix form:

$$
b(t)=T(A) b(t-1) \text { for } t \geq 1
$$

then

$$
b(t)=T(A)^{t} b(0)
$$

Convergence and the measure of the speed

Lemma 1
If A is $\underbrace{\text { connected }}_{\text {irreducible }}$ and has $\underbrace{\text { at least one cycle of odd length, }}_{\text {aperiodicity }}$, then $T(A)^{t}$ converges to a limit $T(A)^{\infty}$ such that $\left(T(A)^{\infty}\right)_{i j}=\frac{d_{j}(A)}{D(A)}$

It follows from standard results on Markov chains and implies that for any given initial vector of beliefs $b(0)$, all agents' behaviors or beliefs converge to an equilibrium in which consensus obtains. That is:

$$
\lim _{t \rightarrow \infty} b(t)=T(A)^{\infty} b(0)=(b, \ldots, b) \text { where } b=\sum_{j} b_{j}(0) \frac{d_{j}(A)}{D(A)}
$$

Golub and Jackson (2010) propose aperiodicity as a condition ensuring convergence in strongly connected stochastic matrices.

Definition 1

The matrix T is aperiodic if the greatest common divisor of the lengths of its simple cycles is 1 .

Convergence and the measure of the speed

- At each moment, message through one link twice
- For the network A and starting belief b, we denote the consensus distance at time t by $C D(t ; A, b)$
- The distance of beliefs at time t from consensus is
$C D(t ; A, b)=\left|T(A)^{t} b-T(A)^{\infty} b\right|_{s(A)}$ where $s(A)$ is denoted by $s(A)=\left(\frac{d_{1}(A)}{D(A)}, \ldots, \frac{d_{n}(A)}{D(A)}\right)$
- We examine how many periods are needed for the vector describing agents' belief to get within some distance ε of its limit.

Definition 2

The consensus time to $\varepsilon>0$ of a connected network A is

$$
C T(\varepsilon ; A)=\sup _{b \in[0,1]^{n}} \min \{t: C D(t ; A, b)<\varepsilon\}
$$

Four characters of multi-type random networks

Definition 3

- A sequence of multi-type random networks is sufficiently dense if the ratio of the minimum expected degree to $\log ^{2} n$ tends to infinity:

$$
\frac{\min _{k} d_{k}[Q(P, n)]}{\log ^{2} n} \rightarrow \infty
$$

- A sequence of multi-type random networks has no vanishing groups if $\quad \liminf _{n} \frac{n_{k}}{n}>0$
- A sequence of multi-type random networks has interior homophily if

$$
0<\liminf _{n} h^{\text {spec }}(P, n) \leq \limsup _{n} h^{\text {spec }}(P, n)<1
$$

- Let \underline{P} denote the smallest nonzero entry of P and \bar{P} denote the largest nonzero entry. A sequence of multi-type random networks has comparable densities if:

$$
0<\liminf _{n} \frac{\bar{P}}{\frac{P}{7}} \leq \limsup _{n} \frac{\bar{P}}{\underline{P}}<\infty
$$

Formalization of "Relevance"

Definition 4

Given two sequences of random variables $x(n)$ and $y(n)$, we write $x(n) \approx y(n)$ to denote that for any $\varepsilon>0$, if n is large enough, then the probability that

$$
\frac{(1-\varepsilon) y(n)}{2} \leq x(n) \leq 2(1+\varepsilon) y(n)
$$

is at least $1-\varepsilon$

In other words, $x(n) \approx y(n)$ indicates that the two random expressions $x(n)$ and $y(n)$ are within a factor of 2 (with a vanishingly small amount of slack) for large enough n with a probability going to 1 .

A general measure of homophily: Spectral homophily

- $Q_{k l}(P, n)=n_{k} n_{l} P_{k l}$ represents the expected total contribution to the degrees of N_{k} from $N_{l}($ when $k \neq l)$.
- let $d_{k}[Q(P, n)]=\sum_{l} Q_{k l}(P, n)$ be the expected total degree of nodes of type k.
- $F_{k l}$ represents the expected fraction of the links that N_{k} will have with $N_{l}\left(\right.$ take $\left.\frac{0}{0}=0\right)$:

$$
F_{k l}(P, n)=\frac{Q_{k l}(P, n)}{d_{k}[Q(P, n)]}
$$

Definition 5

The spectral homophily of a multi-type random network (P, n) is the second-largest eigenvalue of $F(P, n)$. We denote it as $h^{\text {spec }}(P, n)$.

Main results about homophily affect speeds

Theorem 1

Consider a sequence of multi-type random networks satisfying the conditions in Def 3. Then, for any $\gamma>0$:

$$
C T\left(\frac{\gamma}{n} ; A(P, n)\right) \approx \frac{\log (n)}{\log \left(\frac{1}{\left.\mid h^{\sec (P, n) \mid}\right)}\right)}
$$

Explanation of the theorem:

- The speed of the process essentially depends only on population size and homophily
- The approximation for consensus time on the right-hand side is always within a factor of 2 of the true consensus time
- Properties of the network other than spectral homophily can change the consensus time by at most a factor of 2 relative to the prediction made based on spectral homophily alone

A special case: The islands model

In the multi-type random network notation, we say the multi-type random network (P, \mathbf{n}) is an islands network with parameters $\left(m, p_{s}, p_{d}\right)$ if:

- m islands of equal size;
- $P_{k k}=p_{s}$ for all k;
- $P_{k l}=p_{d}$ for all $k \neq l$, where $p_{d} \leq p_{s}$ and $p_{s}>0$.

Definition of the homophily in islands model:
The natural measure of homophily is to compare the difference between same and different linking probabilities to the average linking probability.

Let $p=\frac{p_{s}+(m-1) p_{d}}{m}$ be the average linking probability, we define:

$$
h^{\text {islands }}\left(m, p_{s}, p_{d}\right)=\frac{p_{s}-p_{d}}{m^{*} p}
$$

It coincides with Coleman's(1958) homophily index:

$$
\frac{\frac{p_{s}}{m p}-\frac{1}{m}}{1-\frac{1}{m}}
$$

- $h^{\text {islands }}\left(m, p_{s}, p_{d}\right) \in[0,1]$

A simple case: The islands model

Proposition 1

If (P, n) is an islands network with parameters $\left(m, p_{s}, p_{d}\right)$, then:

$$
h^{i s l a n d s}\left(m, p_{s}, p_{d}\right)=h^{\text {spec }}(P, n)
$$

Proof:

$h^{\text {islands }}\left(m, p_{s}, p_{d}\right)=h^{\text {spec }}(P, n) \longleftrightarrow \frac{p_{s}-p_{d}}{m p}$ is the second largest eigenvalue of $F(P, n)$

Proof of the proposition 1

$$
\begin{cases}p_{s} & k=1 \\ p_{d} & k \neq 1\end{cases}
$$

$F_{k l}(P, n)=\frac{Q_{k l}(P, n)}{d_{k}(Q(P, n))}$ where $Q_{k l}(P, n)=\underbrace{n_{k}} \underbrace{n_{l}}_{P_{k l}}$
$d_{k}(Q(P, n))=\sum_{l=1}^{m} Q_{k l}(P, n)=Q_{k k}(P, n)^{n}+\sum_{l \neq k}^{n} Q_{k l}(P, n)=$ $n^{2} p_{s}+(m-1) n^{2} p_{d}$
So $F_{k l}(P, n)=\frac{Q_{k}(P, n)}{d_{k}(Q(P, n))}=\left\{\begin{array}{ll}\frac{n^{2} p_{s}}{n^{2} p_{s}+(m-1) n^{2} p_{d}} & k=I \\ \frac{n^{2} p_{d}}{n^{2} p_{s}+(m-1) n^{2} p_{d}} & k \neq l\end{array}=\left\{\begin{array}{ll}\frac{p_{s}}{p_{s}+(m-1) p_{d}} & k=I \\ \frac{p_{d}}{p_{s}+(m-1) p_{d}} & k \neq l\end{array}=\right.\right.$
$\begin{cases}\frac{p_{d}}{p_{s}+(m-1) p_{d}}+\frac{p_{s}-p_{d}}{p_{s}+(m-1) p_{d}} & k=1 \\ \frac{p_{d}}{p_{s}+(m-1) p_{d}} & k \neq I\end{cases}$

Proof of the proposition 1

Take E_{m} as m-by-m matrix of 1 and I_{m} as m-by-m identity matrix, then:

$$
F(P, n)=\frac{p_{d}}{p_{s}+(m-1) p_{d}} E_{m}+\frac{p_{s}-p_{d}}{p_{s}+(m-1) p_{d}} I_{m}
$$

- Notice that λ is a eigenvalue of E_{m} if and only if $\frac{p_{d}}{p_{s}+(m-1) p_{d}} \lambda$ is a eigenvalue of $\frac{p_{d}}{p_{s}(m-1) p_{d}} E_{m}$
- Adding $k l_{m}$ is just shifts all the eigenvalues(and 0) by adding to them the k multiplying the identity.

As:

$$
\left|\lambda I_{m}-E_{m}\right|=0 \leftrightarrow \lambda=0 \text { or } \lambda=m
$$

So:
$\left|\lambda I_{m}-E_{m}-\frac{p_{s}-p_{d}}{p_{s}+(m-1) p_{d}} I_{m}\right|=0 \leftrightarrow \lambda=\frac{p_{s}-p_{d}}{p_{s}+(m-1) p_{d}}$ or $\lambda=m+\frac{p_{s}-p_{d}}{p_{s}+(m-1) p_{c}}$
As $m>0$, then the second largest eigenvalue is $\frac{p_{s}-p_{d}}{p_{s}+(m-1) p_{d}}$ which equivalent to $\frac{p_{s}-p_{d}}{m p}$

Thank you ©

