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The Road Map

▸ Introduction of the Models

▸ Multi-type random networks
▸ The average-based updating processes
▸ Convergence and the Measure of the speed

▸ How homophily affects the learning

▸ Define spectral homophily
▸ Show how spectral homophily affects the convergence time of

average-based updating processes

▸ A special case: The islands model

▸ Two measures of homophily coincides
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Multi-type radom networks

Set-up

▸ a set of n nodes, N = {1, . . . ,n}

▸ a network (undirected) represented via a n-by-n adjacency matrix A,
Aij ∈ {0,1}

▸ the degree of node i , di(A) = ∑
n
j=1Aij

▸ the sum of all degrees, D(A) = ∑i di(A) which is twice of the total
number of links

▸ there are m different types of nodes, Nk ⊂ N denote the set of nodes
of type k ,the size of group k denotes by nk = ∣Nk ∣

▸ n = (n1,n2, . . . ,nm) be the corresponding vector of cardinalities, n
denotes the total number of agents

▸ Pkl represents the probability that an agent of type k links to an
agent of type l and P is a m-by-m symmetric matrix

▸ Aij = Aji and Aii = 0 for each i

A multi-type random network is defined by the cardinality vector n
together with a symmetric m-by-m matrix P : A(P,n)
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The average based updating process

▸ Let T (A) be defined by Tij(A) =
Aij

di(A)
(uniformization)

▸ the initial vector of beliefs b(0) ∈ [0,1]n

Agent i ’s choice at date t is

bi(t) = ∑
j

Tij(A)bj(t − 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Agent i only updates the average of his or her
neighbors’ last period choices, because Tii = 0

In matrix form:
b(t) = T (A)b(t − 1) for t ≥ 1

then
b(t) = T (A)

tb(0)
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Convergence and the measure of the speed

Lemma 1

If A is connected
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
irreducible

and has at least one cycle of odd length
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

aperiodicity

, then T (A)t

converges to a limit T (A)∞ such that (T (A)∞)ij =
dj(A)

D(A)

It follows from standard results on Markov chains and implies that for
any given initial vector of beliefs b(0), all agents’ behaviors or beliefs
converge to an equilibrium in which consensus obtains. That is:

limt→∞b(t) = T (A)
∞b(0) = (b, . . . ,b) where b =∑

j

bj(0)
dj(A)

D(A)

Golub and Jackson (2010) propose aperiodicity as a condition ensuring
convergence in strongly connected stochastic matrices.

Definition 1

The matrix T is aperiodic if the greatest common divisor of the lengths
of its simple cycles is 1.
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Convergence and the measure of the speed

▸ At each moment, message through one link twice

▸ For the network A and starting belief b, we denote the consensus
distance at time t by CD(t;A,b)

▸ The distance of beliefs at time t from consensus is
CD(t;A,b) = ∣T (A)tb −T (A)∞b∣s(A) where s(A) is denoted by

s(A) = (
d1(A)
D(A)

, . . . , dn(A)
D(A)

)

▸ We examine how many periods are needed for the vector describing
agents’ belief to get within some distance ε of its limit.

Definition 2

The consensus time to ε > 0 of a connected network A is

CT (ε;A) = supb∈[0,1]nmin{t ∶ CD(t;A,b) < ε}
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Four characters of multi-type random networks

Definition 3

▸ A sequence of multi-type random networks is sufficiently dense if
the ratio of the minimum expected degree to log2n tends to infinity:

mink dk[Q(P,n)]

log2 n
→∞

▸ A sequence of multi-type random networks has no vanishing
groups if lim infn

nk
n
> 0

▸ A sequence of multi-type random networks has interior homophily
if

0 < lim inf
n

hspec(P,n) ≤ lim sup
n

hspec(P,n) < 1

▸ Let P denote the smallest nonzero entry of P and P denote the
largest nonzero entry. A sequence of multi-type random networks
has comparable densities if:

0 < lim inf
n

P

P
≤ lim sup

n

P

P
<∞
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Formalization of “Relevance”

Definition 4

Given two sequences of random variables x(n) and y(n), we write
x(n) ≈ y(n) to denote that for any ε > 0, if n is large enough, then the
probability that

(1 − ε)y(n)

2
≤ x(n) ≤ 2(1 + ε)y(n)

is at least 1 − ε

In other words, x(n) ≈ y(n) indicates that the two random expressions
x(n) and y(n) are within a factor of 2 (with a vanishingly small amount
of slack) for large enough n with a probability going to 1.
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A general measure of homophily: Spectral homophily

▸ Qkl(P,n) = nknlPkl represents the expected total contribution to the
degrees of Nk from Nl (when k ≠ l ).

▸ let dk[Q(P,n)] = ∑l Qkl(P,n) be the expected total degree of
nodes of type k.

▸ Fkl represents the expected fraction of the links that Nk will have
with Nl ( take 0

0
= 0):

Fkl(P,n) =
Qkl(P,n)

dk[Q(P,n)]

Definition 5

The spectral homophily of a multi-type random network (P,n) is the
second-largest eigenvalue of F (P,n). We denote it as hspec(P,n).
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Main results about homophily affect speeds

Theorem 1

Consider a sequence of multi-type random networks satisfying the
conditions in Def 3. Then, for any γ > 0:

CT (
γ

n
;A(P,n)) ≈

log(n)

log( 1
∣hspec(P,n)∣

)

Explanation of the theorem:

▸ The speed of the process essentially depends only on population size
and homophily

▸ The approximation for consensus time on the right-hand side is
always within a factor of 2 of the true consensus time

▸ Properties of the network other than spectral homophily can change
the consensus time by at most a factor of 2 relative to the prediction
made based on spectral homophily alone
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A special case: The islands model
In the multi-type random network notation, we say the multi-type random
network (P,n) is an islands network with parameters (m,ps ,pd) if:

▸ m islands of equal size;
▸ Pkk = ps for all k;
▸ Pkl = pd for all k ≠ l , where pd ≤ ps and ps > 0.

Definition of the homophily in islands model:

The natural measure of homophily is to compare the difference between
same and different linking probabilities to the average linking probability.

Let p = ps+(m−1)pd
m

be the average linking probability, we define:

hislands(m,ps ,pd) =
ps − pd
m∗p

It coincides with Coleman’s(1958) homophily index:

ps
mp

− 1
m

1 − 1
m

▸ hislands(m,ps ,pd) ∈ [0,1]
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A simple case: The islands model

Proposition 1

If (P,n) is an islands network with parameters (m,ps ,pd), then:

hislands(m,ps ,pd) = hspec(P,n)

Proof:

hislands(m,ps ,pd) = hspec(P,n)←→ ps−pd
mp

is the second largest eigenvalue

of F (P,n)
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Proof of the proposition 1

Fkl(P,n) =
Qkl(P,n)

dk(Q(P,n))
where Qkl(P,n) = nk

®
n

nl
®
n

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ps k = l

pd k ≠ l
«
Pkl

dk(Q(P,n)) = ∑
m
l=1Qkl(P,n) = Qkk(P,n) +∑

m
l≠k Qkl(P,n) =

n2ps + (m − 1)n2pd

So Fkl(P,n) =
Qkl(P,n)

dk(Q(P,n))
=

⎧⎪⎪
⎨
⎪⎪⎩

n2ps
n2ps+(m−1)n2pd

k = l
n2pd

n2ps+(m−1)n2pd
k ≠ l

=

⎧⎪⎪
⎨
⎪⎪⎩

ps
ps+(m−1)pd

k = l
pd

ps+(m−1)pd
k ≠ l

=

⎧⎪⎪
⎨
⎪⎪⎩

pd
ps+(m−1)pd

+
ps−pd

ps+(m−1)pd
k = l

pd
ps+(m−1)pd

k ≠ l
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Proof of the proposition 1

Take Em as m-by-m matrix of 1 and Im as m-by-m identity matrix, then:

F (P,n) =
pd

ps + (m − 1)pd
Em +

ps − pd
ps + (m − 1)pd

Im

▸ Notice that λ is a eigenvalue of Em if and only if pd
ps+(m−1)pd

λ is a

eigenvalue of pd
ps+(m−1)pd

Em

▸ Adding kIm is just shifts all the eigenvalues( and 0) by adding to
them the k multiplying the identity.

As:
∣λIm − Em∣ = 0↔ λ = 0 or λ = m

So:

∣λIm−Em−
ps − pd

ps + (m − 1)pd
Im∣ = 0↔ λ =

ps − pd
ps + (m − 1)pd

or λ = m+
ps − pd

ps + (m − 1)pd

As m > 0, then the second largest eigenvalue is ps−pd
ps+(m−1)pd

which

equivalent to ps−pd
mp
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Thank you ,
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